Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Clin Microbiol Antimicrob ; 22(1): 25, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055793

ABSTRACT

BACKGROUND: Patients who develop severe illness due to COVID-19 are more likely to be admitted to hospital and acquire bacterial co-infections, therefore the WHO recommends empiric treatment with antibiotics. Few reports have addressed the impact of COVID-19 management on emergence of nosocomial antimicrobial resistance (AMR) in resource constrained settings. This study aimed to ascertain whether being admitted to a COVID-19 ward (with COVID-19 infection) compared to a non-COVID-19 ward (as a COVID-19 negative patient) was associated with a change in the prevalence of bacterial hospital acquired infection (HAI) species or resistance patterns, and whether there were differences in antimicrobial stewardship (AMS) and infection prevention and control (IPC) guidelines between COVID-19 and non-COVID-19 wards. The study was conducted in Sudan and Zambia, two resource constrained settings with differing country-wide responses to COVID-19. METHODS: Patients suspected of having hospital acquired infections were recruited from COVID-19 wards and non-COVID-19 wards. Bacteria were isolated from clinical samples using culture and molecular methods and species identified. Phenotypic and genotypic resistance patterns were determined by antibiotic disc diffusion and whole genome sequencing. Infection prevention and control guidelines were analysed for COVID-19 and non-COVID-19 wards to identify potential differences. RESULTS: 109 and 66 isolates were collected from Sudan and Zambia respectively. Phenotypic testing revealed significantly more multi-drug resistant isolates on COVID-19 wards in both countries (Sudan p = 0.0087, Zambia p = 0.0154). The total number of patients with hospital acquired infections (both susceptible and resistant) increased significantly on COVID-19 wards in Sudan, but the opposite was observed in Zambia (both p = ≤ 0.0001). Genotypic analysis showed significantly more ß-lactam genes per isolate on COVID-19 wards (Sudan p = 0.0192, Zambia p = ≤ 0.0001). CONCLUSIONS: Changes in hospital acquired infections and AMR patterns were seen in COVID-19 patients on COVID-19 wards compared to COVID-19 negative patients on non-COVID-19 wards in Sudan and Zambia. These are likely due to a potentially complex combination of causes, including patient factors, but differing emphases on infection prevention and control, and antimicrobial stewardship policies on COVID-19 wards were highlighted.


Subject(s)
Bacterial Infections , COVID-19 , Cross Infection , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Prevalence , Pandemics , COVID-19/epidemiology , Drug Resistance, Bacterial , Bacterial Infections/microbiology , Hospitals , Cross Infection/microbiology
2.
Microorganisms ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296293

ABSTRACT

Pathogens including viruses evolve in tandem with diversity in their animal and human hosts. For SARS-coV2, the focus is generally for understanding such coevolution on the virus spike protein, since it demonstrates high mutation rates compared to other genome regions, particularly in the receptor-binding domain (RBD). Viral sequences of the SARS-coV2 19B (S) clade and variants of concern from different continents were investigated, with a focus on the A.29 lineage, which presented with different mutational patterns within the 19B (S) lineages in order to learn more about how SARS-coV2 may have evolved and adapted to widely diverse populations globally. Results indicated that SARS-coV2 went through evolutionary constrains and intense selective pressure, particularly in Africa. This was manifested in a departure from neutrality with excess nonsynonymous mutations and a negative Tajima D consistent with rapid expansion and directional selection as well as deletion and deletion-frameshifts in the N-terminal domain (NTD region) of the spike protein. In conclusion, we hypothesize that viral transmission during epidemics through populations of diverse genomic structures and marked complexity may be a significant factor for the virus to acquire distinct patterns of mutations within these populations in order to ensure its survival and fitness, explaining the emergence of novel variants and strains.

3.
Eur J Hum Genet ; 29(8): 1259-1271, 2021 08.
Article in English | MEDLINE | ID: mdl-33753913

ABSTRACT

Sudan, a northeastern African country, is characterized by high levels of cultural, linguistic, and genetic diversity, which is believed to be affected by continuous migration from neighboring countries. Consistent with such demographic effect, genome-wide SNP data revealed a shared ancestral component among Sudanese Afro-Asiatic speaking groups and non-African populations, mainly from West Asia. Although this component is shared among all Afro-Asiatic speaking groups, the extent of this sharing in Semitic groups, such as Sudanese Arab, is still unknown. Using genotypes of six polymorphic human leukocyte antigen (HLA) genes (i.e., HLA-A, -C, -B, -DRB1, -DQB1, and -DPB1), we examined the genetic structure of eight East African ethnic groups with origins in Sudan, South Sudan, and Ethiopia. We identified informative HLA alleles using principal component analysis, which revealed that the two Semitic groups (Gaalien and Shokrya) constituted a distinct cluster from the other Afro-Asiatic speaking groups in this study. The HLA alleles that distinguished Semitic Arabs co-exist in the same extended HLA haplotype, and those alleles are in strong linkage disequilibrium. Interestingly, we find the four-locus haplotype "C*12:02-B*52:01-DRB1*15:02-DQB1*06:01" exclusively in non-African populations and it is widely spread across Asia. The identification of this haplotype suggests a gene flow from Asia, and likely these haplotypes were brought to Africa through back migration from the Near East. These findings will be of interest to biomedical and anthropological studies that examine the demographic history of northeast Africa.


Subject(s)
Gene Flow , HLA-D Antigens/genetics , Polymorphism, Single Nucleotide , Arabs/genetics , Asian People/genetics , Black People/genetics , Gene Frequency , Human Migration , Humans , Sudan
5.
PLoS One ; 15(8): e0235401, 2020.
Article in English | MEDLINE | ID: mdl-32817665

ABSTRACT

BACKGROUND: Current malaria control and elimination strategies rely mainly on efficacious antimalarial drugs. However, drug resistance is a major threat facing malaria control programs. Determination of drug resistance molecular markers is useful in the monitoring and surveillance of malaria drug efficacy. This study aimed to determine the mutations and haplotypes frequencies of different genes linked with antimalarial drug resistance in certain areas in Sudan. METHODS: A total of 226 dried blood spots (DBS) of microscopically diagnosed P. falciparum isolates were collected from Khartoum and three other areas in Sudan during 2015-2017. Plasmodium falciparum confirmation and multiplicity of infection was assessed using the Sanger's 101 SNPs-barcode and speciation was confirmed using regions of the parasite mitochondria. Molecular genotyping of drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, exonuclease, Pfk13, parasite genetic background (PGB) (Pfarps10, ferredoxin, Pfcrt, Pfmdr2)) was also performed. All genotypes were generated by selective regions amplicon sequencing of the parasite genome using the Illumina MiSeq platform at the Wellcome Sanger Institute, UK then genotypes were translated into drug resistance haplotypes and species determination. FINDINGS: In total 225 samples were confirmed to be P. falciparum. A higher proportion of multiplicity of infection was observed in Gezira (P<0.001) based on the Sanger 101 SNPs -barcode. The overall frequency of mutant haplotype Pfcrt 72-76 CVIET was 71.8%. For Pfmdr1, N86Y was detected in 53.6%, Y184F was observed in 88.1% and D1246Y was detected in 1.5% of the samples. The most frequently observed haplotype was YFD 47.4%. For Pfdhfr (codons 51, 59,108,164), the ICNI haplotype was the most frequent (80.7%) while for Pfdhps (codons 436, 437, 540, 581, 613) the (SGEAA) was most frequent haplotype (41%). The Quadruple mutation (dhfr N51I, S108N + dhps A437G, K540E) was the highest frequent combined mutation (33.9%). In Pfkelch13 gene, 18 non-synonymous mutations were detected, 7 of them were detected in other African countries. The most frequent Pfk13 mutation was E433D detected in four samples. All of the Pfk13 mutant alleles have not been reported to belong to mutations associated with delayed parasite clearance in Southeast Asia. PGB mutations were detected only in Pfcrt N326S\I (46.3%) and Pfcrt I356T (8.2%). The exonuclease mutation was not detected. There was no significant variation in mutant haplotypes between study areas. CONCLUSIONS: There was high frequency of mutations in Pfcrt, Pfdhfr and Pfdhps in this study. These mutations are associated with chloroquine and sulfadoxine-pyrimethamine (SP) resistance. Many SNPs in Pfk13 not linked with delayed parasite clearance were observed. The exonuclease E415G mutation which is linked with piperaquine resistance was not reported.


Subject(s)
Drug Resistance/genetics , Malaria/parasitology , Mutation , Plasmodium falciparum/genetics , Adolescent , Antimalarials/pharmacology , Child , Chloroquine/pharmacology , Female , Humans , Malaria/epidemiology , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Pyrimethamine/pharmacology , Sudan , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Young Adult
6.
Malar J ; 19(1): 78, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32070355

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria is a public health problem worldwide. Malaria treatment policy has faced periodic changes due to emergence of drug resistant parasites. In Sudan chloroquine has been replaced by artesunate and sulfadoxine/pyrimethamine (AS/SP) in 2005 and to artemether-lumefantrine (AL) in 2017, due to the development of drug resistance. Different molecular markers have been used to monitor the status of drug resistant P. falciparum. This study aimed to determine the frequency of malaria drug resistance molecular markers in Southeast Sudan. METHODS: The samples of this study were day zero dried blood spot samples collected from efficacy studies in the Blue Nile State from November 2015 to January 2016. A total of 130 samples were amplified and sequenced using illumina Miseq platform. The molecular markers included were Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfk13, exonuclease and artemisinin resistant (ART-R) genetic background (Pfmdr2, ferroredoxine, Pfcrt and Pfarps10). RESULTS: Resistance markers for chloroquine were detected in 25.8% of the samples as mutant haplotype Pfcrt 72-76 CVIET and 21.7% Pfmdr1 86Y. Pfdhfr mutations were detected in codons 51, 59 and 108. The ICNI double-mutant haplotype was the most prevalent (69%). Pfdhps mutations were detected in codons 436, 437, 540, 581 and 613. The SGEGA triple-mutant haplotype was the most prevalent (43%). In Pfdhfr/Pfdhps combined mutation, quintuple mutation ICNI/SGEGA is the most frequent one (29%). Six of the seven treatment failure samples had quintuple mutation and the seventh was quadruple. This was significantly higher from the adequately responsive group (P < 0.01). Pfk13 novel mutations were found in 7 (8.8%) samples, which were not linked to artemisinin resistance. Mutations in ART-R genetic background genes ranged from zero to 7%. Exonuclease mutation was not detected. CONCLUSION: In this study, moderate resistance to chloroquine and high resistance to SP was observed. Novel mutations of Pfk13 gene not linked to treatment failure were described. There was no resistance to piperaquine the partner drug of dihydroartemisinin/piperaquine (DHA-PPQ).


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Genetic Markers/genetics , Humans , Plasmodium falciparum/genetics , Sudan
7.
Sci Rep ; 8(1): 8870, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891983

ABSTRACT

Malaria control program in the Arabian Peninsula, backed by adequate logistical support, has interrupted transmission with exception of limited sites in Saudi Arabia and sporadic outbreaks in Oman. However, sustained influx of imported malaria represents a direct threat to the above success. Here we examined the extent of genetic diversity among imported P. vivax in Qatar, and its ability to produce gametocytes, compared to parasites in main sites of imported cases, the Indian subcontinent (india) and East Africa (Sudan and Ethiopia). High diversity was seen among imported P. vivax in Qatar, comparable to parasites in the Indian subcontinent and East Africa. Limited genetic differentiation was seen among imported P. vivax, which overlapped with parasites in India, but differentiated from that in Sudan and Ethiopia. Parasite density among imported cases, ranged widely between 26.25-7985934.1 Pv18S rRNA copies/µl blood, with a high prevalence of infections carried gametocytes detectable by qRT-PCR. Parasitaemia was a stronger predictor for P. vivax gametocytes density (r = 0.211, P = 0.04). The extensive diversity of imported P. vivax and its ability to produce gametocytes represent a major threat for re-introduction of malaria in Qatar. The genetic relatedness between P. vivax reported in Qatar and those in India suggest that elimination strategy should target flow and dispersal of imported malaria into the region.


Subject(s)
Communicable Diseases, Imported/transmission , Disease Transmission, Infectious , Genetic Variation , Malaria, Vivax/transmission , Plasmodium vivax/classification , Plasmodium vivax/genetics , Africa, Eastern , Communicable Diseases, Imported/parasitology , Genotype , Humans , India , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Molecular Epidemiology , Parasite Load , Plasmodium vivax/isolation & purification , Qatar/epidemiology , RNA, Protozoan/analysis , RNA, Ribosomal, 18S/analysis , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...